contact us: 1-877-755-weld(9353) DEALERS WANTED | Terms & Policy

Saturday, June 13, 2009

Gas Tungsten arc welder


The team’s first experiments examined titanium welds. Titanium is popular in manufacturing because of its corrosion resistance and light weight. Also, titanium has two well-characterized solid-phase transitions at ambient air pressure before it melts. In pure titanium, the alpha phase exists from room temperature to 882°C. At these temperatures, titanium has a hexagonal-close-packed crystalline structure.

Using the experimental setup shown in the figure below, a metal bar rotates under a Gas Tungsten arc, taking 6 minutes for a full revolution. An intense x-ray beam from the synchrotron source passes through a pinhole to allow researchers to resolve features as small as 180 micrometers. During welding, the x-ray beam is aimed at specific points around the heat source. A silicon photodiode linear array detector records the diffraction patterns during the experiment.




Phase mapping experiments performed using the SRXRD method are useful for observing phase changes under quasi-steady-state heating and cooling conditions. The next step was to examine the changes that occur at a single spot as a function of time. Wong developed a time-resolved x-ray diffraction (TRXRD) technique that takes a set of x-ray diffraction patterns at a single location adjacent to or within a stationary spot weld.

When the detector is clocked for durations of tens to hundreds of milliseconds, phase transformation may be observed on a much shorter time scale than is possible with moving welds. Changes in the diffraction pattern show directly how phase changes are taking place as a function of time and temperature. As the temperature goes up and then down, the metal at the weld becomes liquid and then solidifies. With TRXRD, the Livermore team has been able to examine the solidification and subsequent solid-state phase transformations in a number of different materials for the first time.

Labels: , , , ,

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home